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ABSTRACT

Bearings in the low- and high-pressure liquid oxygen turbopumps for
the Space Shuttle Main Engine (SSME) Phase II development program have
occasionally worn, limiting the life of the bearings. The cause, Or
causes, for the ball wear were unknown, however, several mechanisms were
suspected. Two testers were designed and built for operation in liquid
oxygen to empirically gain insight into the problems and iterate solu-
tions in a timely and cost efficient manner independent of engine test-
ing. Schedules and test plans were developed that defined a test matrix
consisting of parametric variations of loading, cooling or vapor margin,
cage lubrication, material, and geometry studies. TInitial test results
have indicated that the low pressure pump thrust bearing surface dis-
tress is a function of high axial load. 1Initial high pressure turbo-
pump bearing tests have produced the wear phenomenon observed in the
turbopump and identified an inadequate vapor margin problem and a cool-
ant flowrate sensitivity issue. These tests have provided calibration
data of analytical model predictions to give high confidence in the
positive impact of future turbopump design modification for flight.
various modifications will be evaluated in these testers, since similar
turbopump conditions can be produced and the benefit of the modification
will be quantified in measured wear life comparisons.

INTRODUCTION

The Space Shuttle Main Engine (SSME) turbomachinery has repeatedly
demonstrated its reliability and high performance during launch. The
Space Shuttle program emphasis continues to strive for increased design
margin and uprated power to support larger payloads. The uprated turbo-
machinery for the SSME has been tested to extreme limits in demonstra-
ting life margin in the Phase II development program, more SO than the
original flight confiquration. Ball bearings in the high pressure
oxidizer turbopump (HPOTP) and low pressure oxidizer turbopump (LPOTP)
have not, in general, met program life requirements, leading to main-
tance overhaul of the turbopumps for bearing replacement. Rocketdyne is
conducting a component test program to improve bearing life. This paper
describes the test program and results from recent tests.

*Work reported herein was sponsored by.NASA/Marshall Space Flight
Center under Contract NAS8-4000.
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The SSME HPOTP 1is shown in Fig. 1 and provides the high speed,
power, and performance shown in Table 1. The HPOTP rotor is supported
by two duplex pair of preloaded angular contact ball bearings. For
nomenclature, the ball bearings are numbered one through four from the
preburner impeller toward the turbine. The bearings are cooled by
liquid oxygen (LOX), which is supplied from sources downstream of the
main impeller. During mainstage operation, the bearings support radial
loads while axial thrust is carried by the main impeller balance piston.
During startup and shutdown, the turbine end bearings also experience

transient axial loads when the bearing support cartridge bottoms on
travel stops.

Fig. 1. SSME High-Pressure Oxygen Turbopump

Table 1. SSME HPOTP Performance Data

Rated Full
Power Level Power Level
Parameters Main Boost | Main Boost
Pump inlet flow rate (1b/sec) 1070.6| 111.6 1157.8] 129.4
Pump inlel pressure (psia) 319.3 3985.91 392.4 4403.6
Pump discharge pressure (psia)| 4108.7| /106.7] 4556.0| 7861.2
Pump efficiency 0.684 1 0.809 } 0.650 t 0.800
Turbine flow rate (1b/sec) 61.8 69.0
Turbine inlet pressure (psia) 5015.3 5660.8
Turbine inlet temperature (R) 1407.?2 1596.3
Turbine pressure ratio 1.506 1.550
Turbine efficiency 0.749 0.755%
Turbine speed (rpm) 27,1072 29,675
Turbine horsepower 22,907 29,174

Wear on several No. 2 and No. 4 bearings has been experienced in
Phase 1II HPOTP testing. The condition of bearings resulting from this
testing is summarized in Fig. 2 and 3. Wear of the No. 1 and No. 3
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Fig. 2. HPOTP Phase II Pump End Bearing No. 2

Wear History
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Fig. 3. HPOTP Phase II Turbine End Bearing No. 4

Wear History
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bearings has only been observed in conjunction with severe wear of the
No. 2 and No. 4 bearings.

The SSME LPOTP is shown in Fig. 4 and provides the performance data
shown in Table 2. The LPOTP rotor is supported by an 85 mm thrust bear-
ing at the inducer end, which carries the unidirectional axial 1load,
and a preloaded 55 mm angular contact ball bearing on the turbine end.
Radial load in the LPOTP is low, evidenced by axisymmetric raceway
tracks on used bearings. Thrust bearing wear has been experienced in
some LPOTPs, as summarized in Fig. 5. Typically, the balls show dis-
coloration and patches of shallow surface distress.

Table 2. SSME LPOTP Performance

Data
Key Performance Data at 109% Thrust
(Full Power Level)

Pump inlet flowrate (1b/sec) 972
Pump inlet pressure (psia) 100
Pump discharge pressure (psia) 432
Pump efficiency 0.67
Turbine flowrate (1b/sec) 188
Turbine inlet pressure (psia) 4369
Turbine inlet temperature (R) 195
Turbine pressure ratio 10.1
lurbine efficiency 0.65
Turbine speed (rpm) 5300
Turbine horsepower 1770

Fig. 4. SSME Low Pressure Oxygen
Turbopump

Suspected Causes

The potential for improvements 1in bearing performance has been
demonstrated in component tests and by some turbopumps that have
operated without bearing wear for periods considerably longer than
average. Cooling and loading are the primary variables in the turbo-
pumps, which can result in differences in bearing performance. Because
of its low viscosity and poor lubricant properties, only cooling 1is
provided by LOX. Lubrication is provided by a transfer film of teflon
from the Armalon cage to the balls and by a moly-disulfide coating on
the balls and raceways, hence 1s not believed responsible for
variations in bearing performance.

The cause of short HPOTP bearing life 1is suspected to be either

loading, lack of adequate cooling, or a combination of both. A loading
problem could arise from excessive radial loads, or high or low axial
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Fig. 5. LPOTP Thrust Bearing Wear History

loads caused by outer ring binding during axial shaft excursions. Inade-
quate cooling stems from vaporization due to insufficient vapor margin
caused by a high coolant supply temperature, low pressure, Or inadequate
flow. Proposed bearing wear scenarlios are not consistent with all evi-
dence. For example, in the case of the cooling issue, the No. 4 bearing
has better coolant vapor margin than the No. 3 bearing because it is
upstream, but it experiences the wear.

Several causes of LPOTP thrust bearing wear have been postulated:
(1) high axial loading, (2) unloading, (3) cage/retainer nut interfer-
ence, and (4) support misalignment. Again, no single cause is supported
by all evidence.

Test Program Plan

The overall objectives of the LOX bearing test program are to im-
prove bearing life in the HPOTP and LPOTP by obtaining a better under-
standing of bearing behavior in a flood cooled LOX environment and to
develop and evaluate improvements in operating conditions, bearing
geometry, and materials through component testing. Two types of testing
are being conducted: parametric tests, where fluid conditions and load
are varied over a wide range; and comparison tests, where bearing life
at constant operating conditions is determined for various modified
bearings, and compared to that of the baseline bearing.
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The program test schedule is presented in Fig. 6 and a test descrip-
tion summary in Tables 3 and 4. Separate testers are used for HPOTP
turbine end bearing and low pressure (LP) thrust bearing tests. The
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Fig. 6. High and Low Pressure Bearing Test Schedule

Table 3. High Pressure Bearing Test Plan

Build Title Description
HP-1 Phase I (para) Parametric characterization of operating con-
dition effects
HpP-2 Phase Il (para) Parametric characterization of operating con-
dition effects
HP-3 | Low vapor margin | Baseline duration test of Phase 11 bearing to
(baseline) define wear rates
HP-4 Phase 1 Baseline duration test; wear rate
HP- Low shoulder Cooling performance of low shoulder outer ring
HP- Ton implant 1iC balls/CrN raceway; wear rate performance
HP- SiN balls/ion Wear rate performance
raceways
HpP- THE coated cage | Wear rate performance; teflon transferability
HP- Salox cage Wear rate performance; teflon transferability;
ball scuffing
Hp- BFT coated cage | Wear rate performance; teflon transferability
HP- D€ Wear performance of thin dense chrome at high
speed in LOX environment
HP-5 | Gold plate Wear rate performance
HP- Radial load Cooling performance and pressure differential
HP- Crowned outer Radial load capability; baseline testing
race
HP- Duplex and Cooling performance and pressure differential
roller bearing
HP- Large IRC Phase I bearing with increased clearance
bearing
HP- CRB-7 Material evaluation
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Table 4. Low Pressure Bearing Test

Build Title Description
LP-1 LN2 checkout Tester check with LNp
LP-2 Parametric Parametric characterization of operating con-
(baseline) dition effects
LP-3 | Life at 3000 1b Load effects on wear performance
axial load
LP-6 | Misalignment Radial load simulation vis bearing misalignment
LP-4 Life at 4500 1b Effects of loading on wear rate and bearing
axial load life
LP- Flow effects tffects of coolant flow rate on cooling
performance
LP- lon implanted TiC balls; CrN raceways; wear performance
LpP- SiN balls/ion Wear rate performance
race
LP- Geometry Effects of raceway curvature on heat
(curvature) generation and wear rate
LP- Light series Effects of reduced bearing cross section
on radial load - wear rate
LP- Salox cage Wear performance; teflon transferability
LP- CRB-7 Material evaluation
LP-5 Increased Standard bearing with ball diameter
contact angle reduced 0.001 in.

interchangably into the Facility Test Cell and are tested alternately,
providing efficient usage of test and assembly resources.

This paper presents results from the first two high pressure (HP)
tester builds, which evaluated the influence of bearing coolant con-
ditions on bearing performance, and of Builds 2 and 3 of the LP thrust
bearing tester that addressed axial load and cooling issues.

TEST FACILITY

Both high- and low-pressure bearing testers use the same facility,
with minor modifications to accommodate different flow and instrumenta-
tion requirements. Facility capabilities are summarized in Table 5. 1n
the design of the facility, a major
effort was spent developing a sys- Table 5. Test Facility Capability

tem that could operate the testers Using Liquid Oxygen

at known and repeatable conditions.

to ensure consistency, feedback Flowrate (1bm/sec) 3 to 18

controlled servovalves were used | SUPPly pressure (psig) 100 to 800
Supply temperature (F) -260 to -28%

to maintain constant coolant flow- Drive speed (rpm) 3,000 to 32,000

rate, coolant pressure, and bear- Test duration (sec) > 6000

ing loads. Data on tester control LOX storage tank (gal) 1,000

parameters are reduced in real time

to permit adjustment of servo-setpoints where test parameters cannot be
directly controlled. For example, bearing loads, which in the LP tester
are controlled by the piston pressure differential, are measured using
strain gaged supports. The strains are converted to actual load using
a scaling and averaging algorithm operating in real time on an TBM-PC.
The piston pressure differential setpoint is manually adjusted as re-
quired to obtain the desired load.
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The facility 1is capable of continuous testing for durations in
excess of 6000 sec. Continuous high pressure LOX is supplied by a pair
of tanks that are alternately pressurized and refilled under computer
control. A recent modification to this system, which controls the
minimum pressure of LOX during the refill portion of the cycle, permits
control of LOX temperature into the tester within +2°F over the range
of inlet temperature from -260 to -285°F.

Additional capabilities of the test facility include:

e An evaporator system for measuring two-phase drain flow
A LOX recycle system for returning flow to the supply system

®

® Real-time data reduction

e An inteqrated computer facility control, redline and data
acquisition system.

LOW PRESSURE BEARING TESTER DESIGN

The LP thrust bearing tester is shown in Fig. 7. The shaft is sup-
ported by two 85 mm bearings with the outer races fitted to the tester
housing bore with a 7.5 in. span. The shaft is electric motor driven
through a quill shaft splined to the inlet end of the tester shaft. A
gaseous nitrogen (GN;) purged buffer seal prevents gaseous oXxygen
(GOX) leakage to atmosphere. The drive end (upstream) bearing is loaded
axially by the shaft against a strain gaged ring, used to measure axial
load. This ring seats against a shim that may be tapered to permit
testing at controlled amounts of outer race misalignment.

Axial Load Piston Inboard LOX
_ | _ Laby Seal
Outboard % ‘ <X = ——
LOX Laby Seal -7 . ; y \ = v,
7 : o Ut
gutpoard 7 NG - ke
rain 1 ] N 1 Drive
— o ! ' 1T End
7 7 N =
N . AL, B
Piston Supply N i
(Typ. 2 Loc.) Strain .
il \ Gaged Ring Inboard Drain
1 Manifold
LOX Return Outer Race v\
(Typ. 3 Loc.) Misalignment Shim

LOX Inlet (Typ. 3 Loc.)
Fig. 7. SSME Low Pressure LOX Thrust Bearing Tester

Liquid oxygen enters the tester radially at three locations in the
the mid-housing, flows through both bearings in series, and exits
through three radial holes near the outboard end of the main housing.
A modified HPOTP primary LOX labyrinth seal restricts LOX leakage along
the shaft at the drive end. The leakage combines with GN, leakage from
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the buffer seal in the annular cavity between the two seals and is car-
ried away through the inboard drain line. It passes through an evapor-
ator and is then measured. The measured inlet flow is corrected for
this seal leakage to obtain the bearing coolant flowrate.

At the outboard end of the shaft, a second labyrinth seal restricts
LOX leakage out of the tester end. Leakage is carried away by the out-
board drain line. The outboard drain cavity pressure is controlled to
balance the axial pressure loading on the shaft, which develops from the
differential pressure on the shaft ends and from pressure drop through
the bearings.

An axial load is applied to the outer race of the outboard bearing
by a piston contained within the outboard end of the main housing. The
piston is pressurized by LOX fed through two ports in thc end cover
plate. Leakage past the piston is minimized by small radial clearances
between the piston and housing. Axial load is controlled by the pres-
sure difference between the piston inlet and the bearing coolant
pressure at the exit of the downstream bearing. A Belleville spring
preloads the piston to maintain a minimum load of 500 1lb. The piston
loads the downstream bearing through a strain gaged ring similar to
that at the upstream bearing. The piston load is carried through the
downstream bearing to the shaft, which transmits the 1load to the
upstream bearing where it 1s reacted through the inboard strain gaged
ring to the housing. Axial loads from 500 to 10,000 lb can be applied
to the bearings. There is no provision for applying a radial load to
the bearings, as experience with the LPOTP indicates radial loading is
small.

HIGH PRESSURE BEARING TESTER DESIGN

The HP bearing tester is shown in Fig. 8. The tester is very similar
to the LP tester except in the manner in which the bearings, 57 mm HPOTP
turbine end bearings, are mounted (7 in. apart) and loaded. The up-
stream bearing has a sliding fit in its support housing and is loaded
axially against a strain gaged wave spring that is used to measure axial
load. The outer ring of the downstream bearing fits snugqly into an
antirotated cylindrical cartridge that can slide axially. Both bearings
are loaded through the cartridge by a pair of Belleville springs that
maintain a constant axial load of 700 to 800 1lb over a 0.070-in. opera-
ting range.

Load on the inboard bearing can be adjusted from 300 to 2000 lb by
varying the outboard drain cavity pressure, which acts on the end of the
shaft. Load on the outboard bearing does not change due to pressure
loading and is always equal to the Belleville spring load. A piston is
not used because of the lower axial loads required for preload simula-
tion of the HP bearings.

Because of the higher operating speed of the HP tester, heat addi-
tion to the bearing coolant from fluid churning is significant. By
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Fig. 8. SSME High Pressure LOX Bearing Tester

installing a slinger at the inboard labyrinth seal, coolant tempera-
ture into the upstream bearing can be increased by 20°F, for tests
requiring warmer coolant temperature.

HIGH PRESSURE TESTING RESULTS

The initial parametric testing to define tester behavior was con-
ducted with Build 1 and produced sensitivity data that established key
relationships. Nominal operating test conditions were established to
match high power level turbopump operation. Nominal conditions were:
30,000 rpm shaft speed, 325 psig cavity pressure, 4.75 lbm/sec coolant
flowrate, and 1100 lb. preload on the inboard bearing. During initial
testing on HP tester Build 1, a negative pressure differential across
the 1inboard bearing was observed that increased as shaft speed in-
creased; these data are shown in Fig. 9. Most of this measured negative
pressure differential is the result of the downstream pressure tap being
at a larger radius than the upstream tap and measuring a difference in
vortex strength at the two locations. A small portion of the negative
pressure differential was calculated to be the result of bearing pump-
ing. As the bearing cavity pressure was reduced below 325 psig, the
inboard bearing pressure differential would increase (become less
negative) while fluid temperature was constant. This response was the
result of a LOX phase change in the bearing, which reduced the effective
fluid density downstream of the bearing. At nominal conditions and a
225 psig cavity pressure, vaporization in the inboard occurred above
25,000 rpm as shown in Fig. 10. As the cavity pressure was further
reduced, the amount of fluid vaporization increased as shown in Figq.
11. This effect of cavity pressure data shown in Fig. 11 indicates
formation of significant vapor below 325 psiqg for the nominal speed,
flow, and load condition.
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A significant coolant flowrate influence on the inboard bearing
pressure differential was also measured. As the coolant mass flowrate
was reduced, the amount of fluid vaporization in the bearing increased
at nominal speed, pressure, and load. The measured relationship is
shown in Fig. 12 where a significant change occurs below about 5 lbm/
sec. The transition point is a function of cavity pressure and shifts
higher in flowrate at higher cavity pressures. The effect is due to
rising £luid temperature caused by fluid churning losses in the bearing
area, which do not decrease in proportion to flowrate. Axial load
variations had no significant effect on coolant temperature rise or
bearing pressure differential.

10
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Fig. 12. Effect of Coolant Flow Rate on Inboard Bearing AP
(At Nominal Speed, Pressure, and Load)

Build 1 testing showed that the presence of vapor alohe does not
result in immediate rapid bearing wear. Both upstream and downstream
bearings remained in good condition following 2800 sec of operation at
30,000 rpm, including 800 sec with vaporization at the upstream bearing.
Rapid wear of the downstream bearing was initiated when coolant flow
and pressure were simultaneously reduced, resulting in substantially
more vaporization as indicated by the dashed box portion of Fig. 11.

The downstream bearing was found to be worn similar to a pump end
45 mm No. 2 bearing with darkened balls, average ball wear of 0.0046 in
diametral, a concentric and wide inner race track with a high inner race
contact angle, and a wide outer race track with a negative contact
angle. A typical ball from the bearing is shown in Fig. 13. The upstream
bearing remained in good condition, 1inspite of operating at a higher
load. The bearing spring strain gagqe measurement provided cage speed
frequency versus time data shown in Fig. 14, which aided in determining
wear initiation time.

Testing of Build 2 of the HP bearing tester was conducted with
lower coolant temperature to investigate bearing performance with good
coolant conditions. Coolant pressure and flowrate were reduced to the
levels of Build 1 tests without producing evidence of vaporization in
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the bearings. Following 6900 sec at 30,000 rpm, the downstream bearing
balls remained shiny with no wear, thus demonstrating a significant im-
provement in bearing life as a result of increased vapor margin.

During the Build 2 tests, the upstream bearing was subjected to
over 1000 sec of high speed, low axial load operation (30,000 rpm, 300
1bf), and 1000 sec at 12,000 rpm with an axial locad less than 100 1bf.
This was done to determine the effect of low bearing preload and unload-
ing of the bearing during the shutdown transients. Although the upstream
bearing wore slightly (average ball wear was 0.00036 in. diameter), it
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performed much better than predicted. It 1is concluded from this test
that, with good cooling, the brief unloading experienced by the No. 4
bearing during the shutdown transient should not affect bearing
performance.

Application to HPOTP Modifications

Build 1 and 2 tests focused attention on the cooling adequacy of
the HPOTP pump and turbine end bearings. Bearing coolant capacity
relative to the bearing heat load is presented in Figqg. 15. The coolant
upstream enthalpy margin is the quantity of heat the coolant can absorb
before vaporization would begin to occur at the bearing exit, that is,
the difference 1in coolant upstream enthalpy and 1liquid saturation
enthalpy at the bearing exit pressure. Vaporlization will occur when
the enthalpy margin times the flowrate 1is less than the bearing heat
load. Vaporization limits for bearing heat rates of 20, 30, and 40
Btu/sec are shown in the Fig. 15; tester data are shown by circles.
The closed (dark) circles are test points where fluid vaporization was
experienced, evidenced by upstream bearing pressure differential mea-
surements, hence, a maximum bearing heat generation rate of 40 Btu/sec
is indicated in the tester upstream bearing. Results of Build 2 tests,
without vaporization, yield a heat generation rate of 30 Btu/sec based
on the coolant temperature rise across the upstream bearing.

nthalpy Margin Required to Avoid Vaporization
40 Btu/sec for Given Bearing Heat Input
30 Btu/sec

20 Btu/sec O Besring Tester Dats
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Fig. 15. HPOTP Turbine End Bearing Comparison of Tester
Data With Operating Coolant Conditions

Also shown in Fig. 15 are predicted coolant conditions for the HPOTP
turbine end bearings under turbopump operating conditions. In the worst-
case condition, during engine operation with the LOX tank vented to
minimum pressure, the bearings are expected to experience some coolant
vaporization because duplex bearings have a higher heat generation than
the single tester bearing. A HPOTP design modification to increase
coolant flow shows that the vapor margin will be increased slightly.
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In Figure 16, the tester data are presented along with the pump end
bearing set operating points. The pump end bearing, in the worst case,
operates with no vapor margin. A HPOTP design modification incorporates
a back pressure seal downstream of the bearings to raise coolant pres-
sure. This will significantly improve bearing coolant conditions at
the pump end for all conditions as shown in Fig. 16.
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LOW PRESSURE TESTING RESULTS

Build 1 testing was used to check out the test facility and tester
using liquid nitrogen (LN,), and LOX was used for subsequent testing.

For Build 2, parametric tests were conducted where coolant flowrate
was varied from 4 to 16 lbm/sec (LPOTP flow is approximately 10 1lbm/
sec) at 290 and 180 psig. No bearing wear or indications of fluid
vaporization were obtained indicating that bulk vaporization of coolant
does not occur in the LPOTP. Bearing heat generation rate was found to
be strongly influenced by applied load, however the bulk temperature
rise across the bearing was only 1 or 2°F.

After accumulating 6600 sec at loads generally less than 2000 1bf,
rapid bearing wear occurred in less than 200 sec when load was increased
to 6000 1bf. The worn bearing was similar in appearance to worn LPOTP
bearings; an example 1is shown in Fig. 17.

Build 3 testing consisted of operating at 3000 1bf axial load at
coolant conditions slightly worse than predicted in the LPOTP. Moderate
bearing wear (0.0005 in. ball diameter) was obtained after 18,000 sec,
demonstrating that bearing life in excess of current LPOTP life could
be obtained at 3000 lbf load, even with poorer coolant conditions. The
condition of the bearings was similar to used LPOTP bearings.
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Application of Results to LPOTP

Build 2 and 3 testing suggests that premature turbopump wear may be
caused by axial loads between 3000 and 6000 1bf. Reduction of the peak
thrust load in the turbopump by changing the thrust balance may not be
feasible because unloading of the bearing may occur at some operating
conditions. Various approaches to extend bearing life at high load are
being pursued.

The testing has demonstrated that bulk vaporization of coolant is
not likely to occur in the LPOTP, hence an increase in coolant flowrate
is not likely to be beneficial.

CONCLUSIONS

To date, the HP tester results have added significant experimental
evidence that support proposed fixes to the HPOTP. It has been shown
that:

l. Bearing wear, similar in appearance to that of the HPOTP No. 2
bearing, is initiated by poor coolant conditions.

2. Significant 1improvements in bearing life are obtainable by im-
proving coolant vapor margin.

3. Current turbopump coolant flowrates and pressure levels are
marginal for preventing coolant vaporization within the bearing.

Additionally, measurement of fluid pressures upstream and downstream

of the bearing have helped quantify vortex strength and bearing heat
generation data has been obtained.
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Results of LP thrust bearing testing strongly suggest that the
turbopump experiences sustained loads under some operating conditions
in the 3000 to 6000 1bf range and that improvements in bearing geometry
and/or materials, are required to extend bearing life.

The test facility and bearing tester have demonstrated the ability
to subject the test bearings to known, repeatable operating conditions
that can individually be varied over a wide range to evaluate separate
influences. Moreover, they are providing an efficient and rapid means
of evaluating new bearing geometries and materials at test conditions
representative of the turbopumps.

CURRENT STATUS AND FUTURE PLANS

High pressure tester Build 3 and 4 have been completed, which com-
pared Phase II and Phase I bearing life under similar conditions of
poor vapor margin. Approximately 40% longer life was obtained from the
Phase II bearing, which has larger internal clearance and increased
inner race curvature. Test data are presently being reviewed. As indi-
cated in Table 3, near term plans are to evaluate several material
changes. Longer terms plans are to modify the upstream bearing position
in the tester to accept a duplex bearing pair to obtain data on the flow
field between the bearings. Also planned is the addition of a radial
loading device to evaluate the effect of combined radial and axlal
loads.

The LP tester is currently completing a life test at 4500 1lbf axial
load, which will serve as a baseline for evaluating improvements to
bearing geometry and materials. Testing of a high contact angle (for
jncreased thrust capacity) bearing is planned next. A test to evaluate
the influence of outer race misalignment at low load is also planned
for the near future.
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